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First Observation of Intramolecular no CT emission has been found for isolated jet-cooled molecules
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Department of Chemistry, Graduate School of Science Among a wide variety of the ICT moleculéphenyldisilanes,

Tohoku Uniersity, Aoba-ku, Sendai 980-77, Japan where the disilanyl group and the aryl system serve as an
' ' ' electron donor and an acceptor, respectively, are quite unique

because they show dual fluorescence, one originating from a
locally excited (LE) state and the other from an ICT state, even
. . ) . in a nonpolar solverft’ We have found that jet-cooleg+
Slncg the first report by Llppeyt on dual fluorescence exhibited cyanophenyl)pentamethyldisilane (CPBSJhich bears a strong
by p-(dimethylamino)benzonitrile (OMABN}),a vast number  gjectron-accepting substituent at the para position of the
of studl_es have been devoted to elucidation of the meCha“'Smphenylpentamethyldisilane (PDS), shows the ICT emission from
of the intramolecular charge transfer (ICT) emission of the tne isolated molecules without solvation. In addition, the
molecules in which a donor and an acceptor moiety are linked ¢|ysters of CPDS with water, CPB§H-O), (n = 1 and 2),
by a single bond. The twisted intramolecular CT (TICT)  were found to exhibit the enhanced and significantly red-shifted
modef has been widely accepted as the mechanism for the cT emission.
stabilization of the ICT excited Sta@eNhere the CT excited (p-Cyanopheny])pentamethy]disi]ane (CPDS) was heated to
state is accompanied by a9fvist of the dimethylamino group 350 K to gain its vapor pressure. CPDS vapor seeded in He
with respect to the aromatic ring, while some other ideas than gas was supersonically expanded into a vacuum chamber
the TICT model have also been proposdor example, a  through a pulsed nozzle with an orifice 0.8 mm in diameter.
quinoid-type structure model for DMABRE However, the Output of an XeCl excimer laser (Lambda Physik LPX 105i)
formation of the ICT excited state via the intramolecular pumped tunable dye laser (Lambda Physik FL3002) was
stabilization such as the TICT mechanism is usually ac- frequency doubled and used for the excitation of the jet-cooled
companied by inevitable solvation of such a highly polarized CPDS. The laser beam irradiated the jet at 10 mm downstream
excited state; it has been difficult to observe the ICT state of the pulsed nozzle. Fluorescence was collected by a lens
induced only by the intramolecular origin. Whereas supersonic system and detected by a photomultiplier tube (Hamamatsu
molecular beam techniques have been applied for spectroscopid P28). For laser-induced fluorescence (LIF) excitation spectra,
studies of ICT molecules under an isolated molecular condition, total emission intensity was monitored as a function of the dye
laser frequency. A 25-cm monochromator (Nikon P-250) was
T Photodynamics Research Center, The Institute of Physical and Chemicalused for the dispersed fluorescence (DF) spectra.
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Figure 1. LIF excitation spectrum of jet-cooled CPDS.
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Figure 2. DF spectra of jet-cooled CPDS monomer obtained by the
excitation of (a) the ® and (b) the & bands.

seen for all species. A similar low-frequency vibrational mode

also has been observed in the case of PDS (35t so that

this mode may be due to a torsional motion of the Siigroup

with respect to the phenyl ring. Since definitive assignment of

this mode has not yet been made, we denote this mode as “a”
Dispersed fluorescence (DF) spectra from thari & levels

of CPDS monomer are shown in Figure 2. In the DF spectrum

from the @ level, an intense emission with distinct vibrational

structures starting from the level of the laser excitation and a

broad and red-shifted emission were observed. The former is

assigned to the LE emission from the laser pumpet level.
The peak maximum of the latter is located at 28 500 tend
red shifted by about 7000 crhfrom the excitation level. This
feature is very similar to that of the CT emission of CPDS in
a nonpolar solventifax = 26 300 cn).%2 To confirm that

this emission is not due to phosphorescence, we measured its

(10) Kira, M.; Miyazawa, T.; Mikami, N.; Sakurai, HOrganometallics
1991 11, 3793. (b) Teh, C. K.; Sipior, J.; Fink, M.; Sulkes, \Lhem.
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Figure 3. DF spectra of jet-cooled CPDEH,0), clusters obtained
by the excitation of (a) @ (n = 2), (b) & (n= 1), and (c) & (n = 0)
bands. Peaks indicated with asterisks are due to scattering of the laser
light.

lifetime and found that it decayed faster than 20 ns. Such a
fast decay cannot be originated from its phosphorescence but
is due to a fluorescence-like emission. Thus, we assigned the
broad emission as a CT emission. Moreover, it is noted that
intensity of the CT emission is substantially enhanced in the
DF spectrum from theldevel compared with that from the®0
level, while the excitation energy increases by only 26 tm
The result represents that the excitation of this mode “a” is quite
effective for the intramolecular CT process.

In Figure 3, the DF spectra from thé& igvels of the CPDS
H.0 clusters are shown together with that from thdexel of
CPDS monomer. It is apparent that the LE emission is totally
quenched and only the CT emission appears in the CGPDS
H,0 clusters. The feature is also quite similar to the emission
of PDS in solution of a polar solvent. The peak maxima of the
CT emission of the CPDS(H,0), clusters fom =1 and 2 are
red shifted by 1000 and 2000 cécompared with that of CPDS
monomer, respectively. This behavior caused by solvent
‘clustering also supports that the broad emission comes from
the CT state.

In conclusion, we have found for the first time that jet-cooled
CPDS exhibits the dual emission from th&l8vel even in an
isolated molecular condition, while at present, it remains open
whether the stabilization of the ICT state is achieved by twisting
around the C(Ar-Si bond or other molecular deformations.
The stabilization of the ICT state and the enhancement of the
CT emission are induced by cluster formation of CPDS with
one or two HO molecules.

Further works are in progress to elucidate the stabilization
mechanism for the ICT states of aryldisilanes and their clusters
with various small molecules.
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